电力大数据期刊

频道:最新资讯 日期: 浏览:19

今天给各位分享电力大数据期刊的知识,其中也会对电力大数据期刊级别进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

有哪些关于大数据方面的期刊

涉及到大数据方面的其实很多,数据挖掘,这本里面算是比较专业针对数据的了,其他的像社会科学前沿,水资源研究,都是涉及到用大数据来处理的相关论文了

电力大数据包括哪一些?

那么,“大数据”究竟会给电力企业的未来发展带来什么启示呢?

“大数据”的核心:更准确地预测

“大数据”源自英文bigdata,对这个概念的解释千差万别,美国学者舍恩伯格在他的专著中解释说:“大数据,就是我们可以在更大规模的数据上,做到更多我们无法在小规模数据基础上完成的事情。”

他认为,“大数据”的核心就是对庞杂的超大规模数据资料进行分析,从而可以更准确地预测,这必然引发商业变革。以欧洲快销时尚品牌ZARA为例,该公司通过对消费者登录网店的数据进行分析,找出最受欢迎的产品,作为实体店的推荐参考,果然效果很好。并在实体店及网店中不停地收集消费者反馈:

“我喜欢这个图案”、“我讨厌这个扣子”等,所有消息都通过销售经理反馈给数据处理中心,最终各方信息都将被分类处理,成为设计、生产、销售的指引。

ZARA借此将销售收入提高了10%。

舍恩伯格在该书中提出了一个非常具有颠覆性的观点:通过对庞大数据分析知道“是什么”就够了,不必再去追问“为什么”,就好像

ZARA只需通过“大数据”分析了解什么款式最受欢迎,不必再花精力去研究消费者为什么喜欢。这个观点对于企业管理者来说,尤为重要。

为电网规划和新能源探路

舍恩伯格说,可以抽象地认为,智能电网就是“大数据”这个概念在电力行业中的应用,就是通过网络将用户的用电习惯等信息传回给电网企业的信息中心,进行分析处理,并对电网规划、建设、服务等提供更可靠的依据。

日前,美国加州大学洛杉矶分校的研究者就根据“大数据”理论设计了一款“电力地图”,将人口调查信息、电力企业提供的用户实时用电信息和地理、气象等信息全部集合在一起,制作了一款加州地图。该图以街区为单位,展示每个街区在当下时刻的用电量,甚至还可以将这个街区的用电量与该街区人的平均收入和建筑物类型等相比照,从而得出更为准确的社会各群体的用电习惯信息。

这个“大数据”地图也为城市和电网规划提供了直观有效的负荷数预测依据,也可以按照图中显示的停电频率较高、过载较为严重的街区进行电网设施的优先改造。

同时,对于风能、太阳能等具有间歇性的新能源,通过“大数据”分析进行有效地调节,也可以使新能源更好地与传统的水火电进行互补,更为灵活地出力。

电力大数据分析有什么用

当然有用了,通过大数据的分析可以得出地区用电量的数据啊,以及哪个时间段的用电量大,然后可以根据结果分配电力的供求啊。柠檬学院大数据。

大数据的预测功能是增值服务的核心

大数据的预测功能是增值服务的核心

从走在大数据发展前沿的互联网新兴行业,到与人类生活息息相关的医疗保健、电力、通信等传统行业,大数据浪潮无时无刻不在改变着人们的生产和生活方式。大数据时代的到来,给国内外各行各业带来诸多的变革动力和巨大价值。

最新发布的报告称,全球大数据市场规模将在未来五年内迎来高达26%的年复合增长率——从今年的148.7亿美元增长到2018年的463.4亿美元。全球各大公司、企业和研究机构对大数据商业模式进行了广泛地探索和尝试,虽然仍旧有许多模式尚不明朗,但是也逐渐形成了一些成熟的商业模式。

两种存储模式为主

互联网上的每一个网页、每一张图片、每一封邮件,通信行业每一条短消息、每一通电话,电力行业每一户用电数据等等,这些足迹都以“数据”的形式被记录下来,并以几何量级的速度增长。这就是大数据时代带给我们最直观的冲击。

正因为数据量之大,数据多为非结构化,现有的诸多存储介质和系统极大地限制着大数据的挖掘和发展。为更好地解决大数据存储问题,国内外各大企业和研究机构做了许许多多的尝试和努力,并不断摸索其商业化前景,目前形成了如下两种比较成熟的商业模式:

可扩展的存储解决方案。该存储解决方案可帮助政府、企业对存储的内容进行分类和确定优先级,高效安全地存储到适当存储介质中。而以存储区域网络(SAN)、统一存储、文件整合/网络连接存储(NAS)的传统存储解决方案,无法提供和扩展处理大数据所需要的灵活性。而以Intel、Oracle、华为、中兴等为代表的新一代存储解决方案提供商提供的适用于大、中小企业级的全系存储解决方案,通过标准化IT基础架构、自动化流程和高扩展性,来满足大数据多种应用需求。

云存储。云存储是一个以数据存储和管理为核心的云计算系统,其结构模型一般由存储层、基础管理、应用接口和访问层四层组成。通过易于使用的API,方便用户将各种数据放到云存储里面,然后像使用水电一样按用量进行收费。用户不用关心数据的存储介质、网络状况以及安全性的管理,只需按需向提供方购买空间。

源数据价值水涨船高

在红红火火的大数据时代,随着数据的累积,数据本身的价值也在不断升值,这种情况很好地反应了事物由量变到质变的规律。例如有一种罕见的疾病,得病率为十万分之一,如果从小样本数据来看非常罕见,但是扩大到全世界70亿人,那么数量就非常庞大。以前技术落后,不能将该病情数字化集中研究,所以很难攻克。但是,我们现在把各种各样的数据案例搜集起来统一分析,我们很快就能攻克很多以前想象不到的科学难题。类似的例子,不胜枚举。

正是由于可以通过大数据挖掘到很多看不见的价值,源数据本身的价值也水涨船高。一些掌握海量有效数据的公司和企业找到了一条行之有效的商业路径:对源数据直接或者经过简单封装销售。在互联网领域,以Facebook、twitter、微博为代表的社交网站拥有大量的用户和用户关系数据,这些网站正尝试以各种方式对该源数据进行商业化销售,Google、Yahoo!、百度[微博]等搜索公司拥有大量的搜索轨迹数据以及网页数据,他们可以通过简单API提供给第三方并从中盈利;在传统行业中,中国联通[微博](3.44, 0.03, 0.88%)、中国电信[微博]等运营商拥有大量的底层用户资料,可以通过简单地去隐私化,然后进行销售盈利。

各大公司或者企业通过提供海量数据服务来支撑公司发展,同时以免费的服务补偿用户,这种成熟的商业模式经受住了时间的考验。但是对于任何用户数据的买卖,还需处理好用户隐私信息,通过去隐私化方式,来保护好用户隐私。

预测是增值服务的核心

在大数据基础上进行深度挖掘,所衍生出来的增值服务,是大数据领域最具想象空间的商业模式。大数据增值服务的核心是什么?预测!大数据引发了商业分析模式转变,从过去的样本模式到现在的全数据模式,从过去的小概率到现在的大概率,从而能够得到比以前更准确的预测。目前形成了如下几种比较成熟的商业模式。

个性化的精准营销。一提起“垃圾短信”,大家都很厌烦,这是因为本来在营销方看来是有价值的、“对”的信息,发到了“错”的用户手里。通过对用户的大量的行为数据进行详细分析,深度挖掘之后,能够实现给“对”的用户发送“对”的信息。比如大型商场可以对会员的购买记录进行深度分析,发掘用户和品牌之间的关联。然后,当某个品牌的忠实用户收到该品牌打折促销的短信之后,一定不是厌烦,而是欣喜。如优捷信达、中科嘉速等拥有强大数据处理技术的公司在数据挖掘、精准广告分析等方面拥有丰富的经验。

企业经营的决策指导。针对大量的用户数据,运用成熟的数据挖掘技术,分析得到企业运营的各种趋势,从而给企业的决策提供强有力的指导。例如,汽车销售公司,可以通过对网络上用户的大量评论进行分析,得到用户最关心和最不满意的功能,然后对自己的下一代产品进行有针对性的改进,以提升消费者的满意度。

总体来说,从宏观层面来看,大数据是我们未来社会的新能源;从企业微观层面来看,大数据分析和运用能力正成为企业的核心竞争力。深入研究和积极探索大数据的商业模式,对企业的未来发展有至关重要的意义。

关于电力大数据期刊和电力大数据期刊级别的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注合阳路提资讯网。

关键词:电力大数据期刊

相关文章